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Abstract In this paper, we use a variety of mathematical techniques to explore
existence, local stability, and global stability of equilibria in abstract models of mito-
chondrial metabolism. The class of models constructed is defined by the biochemical
description of the system—an electron transport chain coupled to a process of charge
translocation across a membrane. The conclusions are based on the reaction network
structure, and we make minimal assumptions on the kinetics of the reactions involved.
In the absence of charge translocation these models have previously been shown to
behave in a very simple manner with a single, globally stable equilibrium. We show
that with charge translocation the conclusion about a unique equilibrium remains
true, but local and global stability do not necessarily follow. The length of the chains
proves to be important: For short electron transport chains it is possible to make claims
about local and global stability of the equilibrium which are no longer valid for longer
chains. Some particular conditions which ensure stability of the equilibrium for chains
of arbitrary length are presented.

Keywords Mitochondria · Electron transport · Stability · Logarithmic norms

1 Introduction

The processes of electron transport and oxidative phosphorylation in mitochondria are
of vital biological importance, being central to cellular respiration and hence energy
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production in most eukaryotic cells. More than 95% of oxygen consumption in the
human body occurs in mitochondria [1]. The basic features of mitochondrial electron
transport and oxidative phosphorylation are now well understood: Summaries can
be found in textbooks such as [2] or [3], with more detail in [4]. Elucidation of the
detailed mechanisms however, particularly those involving proton pumping, is still in
progress [5].

Mitochondrial electron transport occurs via a series of coupled redox reactions
in the mitochondrial inner membrane. After the initial reduction of a first electron
donor (e.g. NADH or FADH2 produced by glycolysis and the TCA cycle) electrons
are transferred from substrate to substrate, finally being accepted by oxygen. During
some of these electron transfers a second process takes place—protons are pumped
across the mitochondrial inner membrane producing a proton gradient across this
membrane. These protons then return down their gradient, either through leak chan-
nels or through a particular enzyme, ATP synthase, leading to the phosphorylation of
ADP.

Generic models of electron transport chains were explored in [6], where the main
emphasis was on the input–output response of such models. In the simplest case, where
the proton gradient across the membrane was ignored, these models were found to
have very simple behaviour—at all physically meaningful parameter values there was
a single, globally stable, equilibrium. In [7], this result was shown using different
mathematical techniques to generalise to the case of electron transfer networks with
more general topology than a chain.

From energetic considerations we expect the build up of a proton gradient across the
membrane to have an inhibitory effect on electron transport. Models which take this
into account thus have extra negative feedback loops. Intuitively we might expect that
such feedback should not be destabilising. While this proves true for short
chains, we find, surprisingly, that for longer chains this is no longer the case.

Before discussing generic models, it is worth mentioning that there are several
detailed models of electron transport and oxidative phosphorylation such as [8–11].
These ordinary differential equation models have been designed with numerical data
in mind, and reflecting the complexity of the processes involved, the functional forms
are quite involved. There is an interesting discussion of how to ascribe kinetics to elec-
tron transport systems in [12]. Our interest in mitochondria was originally inspired by
analysis and simulation of some of these numerical models, but the approach here is
quite different, and more akin to work in [6,7,13]—because only very weak kinetic
assumptions are made, the generic model we construct could be instantiated in a great
variety of numerical models and the claims we make are valid for all possible instances
of the generic model.

2 The model

2.1 The basic reaction scheme

The basic reaction scheme will be summarised here. Assume that there are n substrates,
each of which can exist in an oxidised state Ai and a reduced state Bi so that
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Ai + e− � Bi

Further, assume that protons can exist in two compartments—the mitochondrial matrix
(where they are termed H+

m ), and the intermembrane space (where they are termed
H+

e )—with the possibility of transfers of the form

H+
m � H+

e

We are interested in reactions which are in general the combination of three pro-
cesses, a reduction, an oxidation, and the transport of some protons across the mem-
brane. So for example, if substrate Ai is reduced to Bi, Bj is oxidised to Aj, and p
protons are pumped across the mitochondrial membrane we get the half reactions

Ai + e− � Bi, Bj � Aj + e− and pH+
m � pH+

e

which combine to give

Ai + Bj + pH+
m � Aj + Bi + pH+

e (1)

We also allow the possibility that a reducing/oxidising agent may be external to the
model giving reactions such as

Ai + pH+
m � Bi + pH+

e or Bi + pH+
m � Ai + pH+

e (2)

A set of redox reactions of the forms 1 and 2 can be termed an electron transfer net-
work. A particular case is an electron transfer chain where in general the i th substrate
is able only to exchange electrons with the (i + 1)th and (i − 1)th substrates, if these
exist. A first and a last substrate can exchange electrons with the outside, reflecting the
initial reduction of NADH or FADH2 and the final oxidation of cytochrome a3 by O2.

We assume there are n substrates, and hence n +1 redox reactions. The i th reaction
has forward rate fi , which may be positive or negative, potentially allowing reactions
to be reversible. For i ≤ n, the i th reaction involves substrate i , and for i ≥ 2, the
i th reaction involves substrate i − 1. We define pi as the number of protons pumped
across the mitochondrial membrane by the i th reaction. Assuming that the quantities
pi are constant discounts the possibility of “redox slip” [14], which does not appear
to be very important in normal circumstances [15]. A quantity ψ can be defined so
that transfer of a single proton across the membrane creates one unit of ψ . ψ can take
any real value and is a strictly increasing function of the proton motive force, i.e. the
electrical/chemical gradient against which protons are pumped across the membrane.

Finally, reflecting the combined effect of proton leak and ADP phosphorylation,
there is a process with rate L representing the “decay” ofψ . When there is no gradient,
no protons leak through the membrane, so that L(0) = 0. Further L is assumed to be
strictly increasing in ψ . The structure of the model is illustrated in Fig. 1.

Because the total quantity—oxidised plus reduced—of any substrate in the chain
is conserved, reduced forms of the substrates are not explicitly introduced. Instead,
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Fig. 1 A schematic representation of the reaction network. The quantities Ai and Bi refer to oxidised and
reduced states of the substrates. The functions fi define the forward rates of reaction of the n + 1 coupled
redox reactions. The quantity ψ represents the electrical and chemical gradient across the mitochondrial
membrane, which has an inhibitory effect on any redox reactions which involve proton pumping

the concentration of Ai is referred to as xi , and the total concentration of Ai + Bi is
assumed constant at mi . We arrive at a model of the form:

ẋ1 = − f1(x1, ψ)+ f2(x1, x2, ψ)

ẋi = − fi (xi−1, xi , ψ)+ fi+1(xi , xi+1, ψ) i = 2, . . . , n − 1
ẋn = − fn(xn−1, xn, ψ)+ fn+1(xn, ψ)

ψ̇ =
n+1∑

i=1
pi fi − L(ψ)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)

The phase space of this system is defined by the equations:

0 ≤ xi ≤ mi i = 1, . . . , n − ∞ < ψ < ∞

and is hence n + 1 dimensional, being the product of a closed n-dimensional box and
the real line.

2.2 Assumptions

All the functions fi , along with L , are assumed to be C1 (once differentiable in all
their arguments with continuous derivatives). The following notation is used for the
derivatives of the functions fi :

fi j ≡ ∂ fi

∂x j
, Fi j ≡ − fi j , fiψ ≡ ∂ fi

∂ψ
, Fiψ ≡ − fiψ (4)

At finite substrate concentrations, all reaction rates are finite, so that at any fixed ψ
each fi is bounded on its domain of definition.

Since ψ represents a potential against which some of the reactions must do work,
the following relations are obtained:

fiψ < 0 if pi �= 0 and fiψ = 0 if pi = 0 (5)
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If pi �= 0, then ψ inhibits the forward reaction and we assume that sufficiently
large values of ψ make the reaction rate arbitrarily small or negative, i.e.

lim
ψ→∞ fi (·, ψ) ≤ 0 i = 1, n + 1

lim
ψ→∞ fi (·, ·, ψ) ≤ 0 i = 2, . . . , n

This reflects the fact that the energy required to pump a proton against a chemical
and electrical gradient becomes large as the gradient increases. Similarly −ψ inhibits
the backward reaction so that:

lim
ψ→−∞ fi (·, ψ) ≥ 0 i = 1, n + 1

lim
ψ→−∞ fi (·, ·, ψ) ≥ 0 i = 2, . . . , n

The following equations imply that no reaction can proceed in the absence of any
of its substrates:

f1(0, ·) = 0
fi (·, 0, ·) = 0 i = 2, . . . , n
fi (mi−1, ·, ·) = 0 i = 2, . . . , n
fn+1(mn, ·) = 0

⎫
⎪⎪⎬

⎪⎪⎭

(6)

The final set of conditions imply that increased substrate concentration increases
the rate of reaction unless one of the substrates is entirely absent:

f11 > 0
fii ≥ 0 and fii > 0 if xi−1 < mi−1 i = 2, . . . , n
fi+1,i ≤ 0 and fi+1,i > 0 if xi+1 > 0 i = 1, . . . , n − 1
fn+1,n < 0

⎫
⎪⎪⎬

⎪⎪⎭

(7)

The fact that the first and final inequalities are always strict implies that there is
always some electron donor to reduce the initial substrate, and some electron acceptor
to oxidise the final substrate, and ensures nondegenerate behaviour. The assumptions
from (7) mean that fii , Fi j and Fiψ as defined in (4) are all nonnegative. The definition
of these nonnegative quantities is solely to simplify later arguments.

3 General behaviour of the system

In this section we outline some properties of the model that hold regardless of the
number n of redox pairs.
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3.1 Boundedness of solutions

It is convenient to define an n×(n+1)matrix which can be regarded as a stoichiometric
matrix for the redox reactions:

S ≡

⎡

⎢
⎢
⎢
⎣

−1 1 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1

⎤

⎥
⎥
⎥
⎦

Defining the vector of reactant concentrations x = [x1, x2, . . . , xn]T , the vector
of reaction rates v(x, ψ) = [ f1, f2, . . . fn+1]T , and the nonnegative vector P ≡
[p1, . . . , pn+1]T , we can rewrite the system of Eq. 3 more briefly as

ẋ = Sv(x, ψ)

ψ̇ = PT v(x, ψ)− L(ψ)

We now show that all forward trajectories of the system are bounded. Since the phase
space is bounded in x, what needs to be shown is that all trajectories enter a bounded
region in the ψ direction. This amounts to showing that ψ̇ > 0 for ψ sufficiently
large and negative, and that ψ̇ < 0 for ψ sufficiently large and positive. By assump-
tion, for any given i , either pi = 0 or fiψ is negative and limψ→∞ fi (·, ·, ψ) ≤ 0,
limψ→−∞ fi (·, ·, ψ) ≥ 0. This in turn implies that limψ→∞ PT v(x, ψ) ≤ 0 and
limψ→∞ PT v(x, ψ) ≥ 0. In addition L is strictly increasing with L(0) = 0. Thus for
any fixed value of x, limψ→∞ PT v(x, ψ)− L(ψ) < 0 and limψ→−∞ PT v(x, ψ)−
L(ψ)>0. Define ψ0(x) as the value of ψ at which PT v(x, ψ)− L(ψ) = 0. ψ0(x) is
uniquely defined since PT v(x, ψ)− L(ψ) is strictly decreasing. Since PT v(x, ψ)−
L(ψ) is a differentiable function of ψ with non-zero derivative, by the implicit func-
tion theorem, ψ0(x) is differentiable. Since it has a compact domain, ψ0(x) achieves
a maximum value which we call ψmax, and a minimum value which we call ψmin. By
these definitions, ψ̇(ψ, x) < 0 for all ψ > ψmax, and ψ̇(ψ, x) > 0 for all ψ < ψmin.

Thus all trajectories enter a closed box, B, bounded by the hyperplanes xi = 0,
xi = mi , ψ = ψmin and ψ = ψmax, and this box forms a trapping region for the
system in all dimensions.

3.2 The Jacobian

Direct calculation gives that the Jacobian, J , of the system is:

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− f11 − F21 f22 · · · 0 F1ψ − F2ψ
F21 − f22 − F32 · · · 0 F2ψ − F3ψ
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · − fnn − Fn+1,n Fnψ − Fn+1,ψ

p1 f11− p2 F21 p2 f22− p3 F32 · · · pn fnn − pn+1 Fn+1,n −Lψ−
n+1∑

i=1
pi Fiψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Here Lψ ≡ dL
dψ . The structure of this Jacobian can be made clearer by defining

two further quantities: A nonnegative vector in R
n , F ≡ [F1ψ, . . . , Fnψ ]T ; and an

(n + 1)× n matrix

V ≡ ∂v
∂x

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f11 0 0 · · · 0
−F21 f22 0 · · · 0

0 −F32 f33 · · · 0
...

...
...

. . .
...

0 0 0 · · · fnn

0 0 0 · · · −Fn+1,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then the Jacobian can be written in the block form:

J =
[

SV SF
PT V −PT F − Lψ

]

(8)

SV is the Jacobian of the system without feedback, which is tridiagonal, and can
easily be shown to have real negative eigenvalues [6]. It was shown in [16] that the
structures of S and V along with the nonnegativity of P and F imply that J is a so
called P(−) matrix (see Appendix A for the definition).1 This result is independent of
n, the length of the chain. It has the consequence that the system is injective; this is
discussed further in the next section.

The fact that J is a P(−) matrix has another consequence of importance to us: It
means that its eigenvalues are excluded from a certain wedge around the positive real
axis: If λ = reiθ is an eigenvalue of an m × m P matrix, then it is proved in [17] that:

|θ − π | > π/m

and equivalently for a P(−) matrix,

|θ | > π/m

Clearly when m = 2, this means that both eigenvalues lie in the left half plane,
so that 2 × 2 P(−) matrices are Hurwitz stable (see Appendix A for a definition of
“Hurwitz stable” which we will abbreviate to “Hurwitz”). However for m > 2, P(−)
matrices may be unstable.

3.3 A unique equilibrium

The existence of a unique equilibrium for this system was shown in [6] by a direct
method. It also follows from the arguments presented above. The existence of a com-
pact, convex, trapping region B constructed above implies, by the Brouwer fixed point

1 The nondegeneracy conditions presented in [16] are met because the nth substrate is terminal, and all
substrates are able to transfer electrons along the chain to the nth substrate.
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theorem, that an equilibrium exists. That this equilibrium must be unique follows from
the fact that the Jacobian is a P(−) matrix, and hence the system is injective [18]. Thus
as our first result we can state that

Electron transport chains coupled to charge translocation across a membrane
have exactly one equilibrium.

It is interesting that the possibility of multistability is immediately ruled out. How-
ever this in itself does not tell us whether all trajectories must necessarily converge to
the unique equilibrium, or whether periodic or chaotic behaviour is still possible.

4 Stability of the equilibrium

In this section, we explore local and global stability of the unique equilibrium, starting
with low dimensions (i.e. short chains). For two dimensions we prove that the equilib-
rium is globally asymptotically stable. In three dimensions we show that the addition
of an extra, reasonable, constraint implies that the equilibrium is locally stable, and
further constraints ensure that it is globally stable. We then demonstrate that these
constraints do not suffice to guarantee stability in four dimensions and higher. Finally,
we outline some additional special conditions that guarantee the Jacobian is Hurwitz
in all dimensions.

4.1 The system in two dimensions

The system in 2D consists of a single redox pair subject to a reduction process and an
oxidation process, both possibly coupled to proton translocation across the membrane.
It takes the form

ẋ1 = − f1(x1, ψ)+ f2(x1, ψ)

ψ̇ = p1 f1 + p2 f2 − L(ψ)

The Jacobian of the system in this case is:

J2 =
[ − f11 − F21 F1ψ − F2ψ

p1 f11− p2 F21 −Lψ− p1 F1ψ − p2 F2ψ

]

(9)

We have already mentioned that 2D P(−) matrices are Hurwitz stable, and it
follows that the matrices J2 are Hurwitz stable. (This can also be shown with a direct
calculation.)

Since J2 is Hurwitz stable everywhere, not just at the unique equilibrium, the
Markus-Yamabe Theorem (e.g. [19–21]) ensures that the equilibrium is globally
stable. We also offer an alternative, elementary, proof of global stability. By the
Poincaré-Bendixson Theorem (see, for example, [22]), ω-limit sets of a flow on com-
pact subsets of R

2 must either contain equilibria or consist of a periodic orbit. In this
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case we can rule out the possibility of periodic orbits: The divergence of the vector
field is equal to

T r(J ) = − f11 − F21 − p1 F1ψ − p2 F2ψ − Lψ

which is negative. Thus the vector field satisfies the Dulac criterion (e.g. [23]) and there
are no periodic orbits. We know that there is only one equilibrium, which is locally
stable, and therefore there are no heteroclinic or homoclinic orbits either. Since every
forward trajectory enters the box B, the unique equilibrium must be the ω-limit of
every trajectory, and is hence globally stable.

4.2 The system in three dimensions

Slightly more complex than the two dimensional system is the system in three dimen-
sions which takes the form

ẋ1 = − f1(x1, ψ)+ f2(x1, x2, ψ)

ẋ2 = − f2(x1, x2, ψ)+ f3(x2, ψ)

ψ̇ = p1 f1 + p2 f2 + p3 f3 − L(ψ)

with Jacobian

J3 =
⎡

⎣
− f11 − F21 f22 F1ψ − F2ψ

F21 − f22 − F32 F2ψ − F3ψ
p1 f11− p2 F21 p2 f22− p3 F32 −Lψ− p1 F1ψ − p2 F2ψ − p3 F3ψ

⎤

⎦ (10)

As it stands, J3 is not always Hurwitz. For example, the Jacobian constructed using
the following values: p1 = 3, p2 = 0, p3 = 88, F1ψ = 33, F2ψ = 4, F3ψ = 0.6,
f11 = 23, f22 = 3, F21 = 94, F32 = 76, Lψ = 6 has two eigenvalues with positive
real part.

J3 can be shown to be Hurwitz everywhere provided one extra condition is met: p1
and p3 must have the same ordering as F1ψ and F3ψ . For a real number z, define the
sign function in the usual way:

sign(z) ≡
⎧
⎨

⎩

1 (z > 0)
0 (z = 0)
−1 (z < 0)

(11)

Then the ordering assumption translates to the following statement:

sign(F3ψ − F1ψ) = sign(p3 − p1) (12)

With this assumption, the Jacobian is everywhere Hurwitz, and hence the equilib-
rium is locally asymptotically stable. The proof is simple but requires some lengthy
evaluations, and the details are presented in Appendix B.
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Unlike in the 2D case it does not follow that the equilibrium is globally stable,
since the Markus-Yamabe conjecture does not hold in dimensions greater than 2 [24].
However we can prove global stability in this case too subject to a strengthened version
of the ordering assumption on the quantities pi and Fiψ . We now require

sign(Fiψ − Fjψ) = sign(pi − p j ) (13)

for i, j ∈ {1, 2, 3}.
With this assumption we are able to use a version of Li and Muldowney’s autono-

mous convergence theorem (Theorem 4.1 in [25]) to show that the unique equilibrium
is globally stable. In order to use this theorem two concepts are needed:

1. The second additive compound of a matrix
2. Logarithmic norms of a matrix.

Both quantities are defined for square matrices. The second additive compound matrix
of any n × n matrix J is a square matrix of dimension nC2 which we will term J [2].
Logarithmic norms are scalar quantities, and corresponding to any given matrix norm,
there is a logarithmic norm. Unlike matrix norms, however, logarithmic norms may
take negative values. The definitions are given in Appendix A.

Consider a dynamical system with Jacobian J (x) at some point of phase space
x . Define J to be the set of all these Jacobians. For our purposes, the autonomous
convergence theorem states the following: If a logarithmic norm µ can be found such
that

µ(J [2]) < 0 for all J ∈ J (14)

then the limit set of each bounded semi-trajectory of the dynamical system is an
equilibrium.

Since all trajectories enter the trapping region B in our system, and since B contains
a unique equilibrium, finding a suitable logarithmic norm satisfying (14) will suffice
to prove global stability of the equilibrium.

The second additive compound in this case is:

J [2]
3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− f11−F21− f22−F32 F2ψ − F3ψ −(F1ψ − F2ψ)

p2 f22− p3 F32 − f11−F21−Lψ−
3∑

i+1
pi Fiψ f22

−(p1 f11− p2 F21) F21 − f22−F32−Lψ−
3∑

i+1
pi Fiψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

We will construct a logarithmic norm µT such that µT

(
J [2]

3

)
< 0. For a real n ×n

matrix, the logarithmic norm corresponding the usual ‖ · ‖1 norm takes the form:

µ1 = max
i∈{1,...,n}

⎛

⎝xii +
∑

k �=i

|xki |
⎞

⎠
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From the definition it is clear that a matrix has negative logarithmic norm µ1 if and
only if every diagonal entry is negative and it is strictly diagonally dominant in every
column. Next we define a constant diagonal coordinate transformation

T =
⎛

⎜
⎝

1 0 0
0 1

pmax
0

0 0 1
pmax

⎞

⎟
⎠

where pmax = max
i∈{1,2,3}(pi ).

According to Lemma 2.2 of [26], given any invertible transformation T , µT (M) ≡
µ1(T MT −1) defines a new logarithmic norm. In this case, since T is a diagonal matrix,
the diagonal entries of M are the same as those of T MT −1. Thus in order to prove that
µT (J

[2]
3 ) < 0, we need to show that J ′ ≡ T J [2]

3 T −1 is strictly diagonally dominant
in every column.

For the first column, we have

J ′
11 + ∣

∣J ′
21

∣
∣ + ∣

∣J ′
31

∣
∣ = − f22 − F32 − f11 − F21

+
∣
∣
∣
∣

p2

pmax
f22 − p3

pmax
F32

∣
∣
∣
∣ +

∣
∣
∣
∣

p2

pmax
F21 − p1

pmax
f11

∣
∣
∣
∣

It can easily be seen that the term on the right hand side is negative since for any
two nonnegative scalars |a − b| ≤ max{|a|, |b|}.

For the second column, we have

J ′
22 + ∣

∣J ′
12

∣
∣ + ∣

∣J ′
32

∣
∣ = −

3∑

i=1

pi Fiψ − Lψ − f11 + pmax
∣
∣F2ψ − F3ψ

∣
∣

For the final column, we have

J ′
33 + ∣

∣J ′
13

∣
∣ + ∣

∣J ′
23

∣
∣ = −

3∑

i=1

pi Fiψ − Lψ − F32 + pmax
∣
∣F2ψ − F1ψ

∣
∣

In order to show that the right hand sides of the last two expressions are negative
we need to show in each case that our ordering assumption (13) implies that the final
term (which may be positive) is dominated in magnitude by the other terms.

Note that |Fiψ − Fjψ | ≤ max{Fiψ, Fjψ } ≤ max
k∈{1,2,3}(Fkψ). Then there are only

three cases:

1. if pmax = p1, then pmax
∣
∣F2ψ − F3ψ

∣
∣ ≤ p1 F1ψ , and pmax

∣
∣F2ψ − F1ψ

∣
∣ ≤ p1 F1ψ .

2. if pmax = p2, then pmax
∣
∣F2ψ − F3ψ

∣
∣ ≤ p2 F2ψ , and pmax

∣
∣F2ψ − F1ψ

∣
∣ ≤ p2 F2ψ .

3. if pmax = p3, then pmax
∣
∣F2ψ − F3ψ

∣
∣ ≤ p3 F3ψ , and pmax

∣
∣F2ψ − F1ψ

∣
∣ ≤ p3 F3ψ .

Each of these possibilities leads to the same conclusion—that J ′
i i + ∑

k �=i
|J ′

ki | < 0 for

each i . Hence we have µT

(
J [2]

3

)
< 0.
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This result means that if the ordering assumption (13) holds, then the unique equi-
librium is globally stable. The ordering assumption itself has the following reasonable
physical meaning which we would expect to be fulfilled in practice: If redox reaction i
is involved in pumping more protons across the membrane than redox reaction j , then
reaction i is correspondingly more inhibited by ψ than reaction j . It is interesting to
note however that this assumption is not necessary to prove global stability in the 2D
case. It is also unknown to us whether the weaker assumption (12), which guarantees
that the Jacobian is everywhere Hurwitz, actually guarantees global stability in 3D.

4.3 Unstable examples in higher dimensions

The ordering assumption (13) does not guarantee global or even local stability of
the equilibrium in dimensions greater than 3. It is easy to construct counterexam-
ples. For example, in four dimensions, the Jacobian constructed by choosing p1 = 2,
p2 = p3 = 0, p4 = 73, F1ψ = 167, F2ψ = F3ψ = 0, F4ψ = 176, f11 = 4, f22 = 7,
f33 = 1, F21 = 32, F32 = 64, F43 = 174, Lψ = 33, satisfies all the constraints,
including the ordering assumption on the values of pi and Fiψ . However it has two
eigenvalues with positive real part.

We make the following remarks:

1. By continuity, the fact that a non-Hurwitz Jacobian can be constructed in four
dimensions guarantees that such examples also exist in all higher dimensions.

2. Systems with non-Hurwitz Jacobian satisfying the ordering assumption (13) seem
to be rare. A script implemented in the open source numerical computation pro-
gram Scilab [27], was able to find counterexamples in dimension 4 by randomly
choosing values for the different terms in the Jacobian, such that all the assump-
tions were satisfied. Out of hundreds of millions of sets of values, less than 10 were
non-Hurwitz.

3. The counterexamples found appear always to be close to breaking the ordering
assumption. For instance, in the example shown, p4 is much greater than p1,
whereas F4ψ is close in magnitude to F1ψ .

4.4 A special case: reaction rates dependent on potentials

In this section we consider an interesting assumption which ensures that the Jacobian
is Hurwitz everywhere (and hence the unique equilibrium is locally stable). The
assumption is as follows:

1. Associated with each half reaction is some “potential”: In the case of a redox reac-
tion of the form Ai + e− � Bi, a potential means any strictly increasing scalar
function of [Ai], such as a redox potential; In the case of a charge transfer across
a membrane a potential means any strictly increasing scalar function of ψ .

2. The rate of any full reaction depends only on the sum of the potentials for the half
reactions involved, and is a strictly decreasing function of this sum.
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This assumption can be interpreted, loosely, as saying that the energetics of the
system determines the kinetics. For example, consider the electron transfer coupled
to some proton pumping

Ai + Bj + pH+
m � Aj + Bi + pH+

e

derived from the half reactions

Ai + e− � Bi, Bj � Aj + e− and pH+
m � pH+

e

In this case, the assumption would imply that the forward rate of the combined
reaction can be written f (−g j (x j )+ gi (xi )− pgψ(ψ)) where the only stipulation is
that f , gi , g j and gψ are strictly increasing in their arguments. When this assumption
is made about all reaction rates in the system, the full system becomes:

ẋ1 = − f1(g1(x1)− p1gψ(ψ))+ f2(−g1(x1)+ g2(x2)− p2gψ(ψ))

ẋi = − fi (−gi−1(xi−1)+ gi (xi )− pi gψ(ψ))+ fi+1(−gi (xi )+ gi+1(xi+1)

−pi+1gψ(ψ)) i = 2, . . . , n

ẋn = − fn(−gn−1(xn−1)+ gn(xn)− pngψ(ψ))+ fn+1(−gn(xn)

−pn+1gψ(ψ))

ψ̇ =
n+1∑

i=1

pi fi − L(ψ)

The term fi (−gi−1(xi−1) + gi (xi ) − pi gψ(ψ)) represents the rate at which the
i th substrate receives electrons from the (i − 1)th substrate. Denoting by f ′

i , g′
i and

g′
ψ the derivatives of the functions fi , gi and gψ , the Jacobian of this system can be

written J = J0 D where J0 is the symmetric matrix

J0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−( f ′
1 + f ′

2) f ′
2 · · · 0 p1 f ′

1 − p2 f ′
2

f ′
2 −( f ′

2 + f ′
3) · · · 0 p2 f ′

2 − p3 f ′
3

...
...

. . .
...

...

0 0 · · · −( f ′
n + f ′

n+1) pn f ′
n − pn+1 f ′

n+1

p1 f ′
1− p2 f ′

2 p2 f ′
2− p3 f ′

3 · · · pn f ′
n − pn+1 f ′

n+1 −
n+1∑

i=1
p2

i f ′
i − Lψ

g′
ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)

and D is the positive diagonal matrix
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D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

g′
1 0 · · · 0 0

0 g′
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · g′
n 0

0 0 · · · 0 g′
ψ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(16)

From the discussions earlier, J0 is a P(−) matrix. Further it is symmetric, and hence
sign symmetric (see Appendix A for a definition of sign symmetry). This implies [28]
that J0 is D-stable, i.e. the product of J0 with any positive diagonal matrix is Hurwitz.
Hence J is Hurwitz. Thus the assumption that reaction rates depend on the sum of
potentials of the half reactions ensures that the Jacobian of the system is everywhere
Hurwitz.

5 Discussion and conclusions

We have analysed in some detail, and using a variety of mathematical techniques, the
behaviour of electron transport chains coupled to a charge translocation process. In
all cases trajectories are bounded, and there is a unique equilibrium, but questions
about the stability of this equilibrium have proved harder. Where the chain consists
of a single redox pair, the unique equilibrium is globally stable. When there are two
redox pairs the same conclusions can be reached subject to some extra conditions on
the feedback process. In higher dimensions no such general conditions can easily be
found.

It is surprising that the coupling of electron transfer to a membrane potential—a
negative feedback loop—can serve to destabilise the unique equilibrium for suffi-
ciently long chains. Interestingly, when the reaction rates are monotonic functions of
a sum of potentials, then the system in any dimension could be proved to be every-
where Hurwitz. Reaction rates cannot in general be seen in this way, but in the case
of reactions which are primarily about charge transfer, the assumption could be rea-
sonable. Certainly some of the choices of reaction rates in numerical models such as
[8] satisfy this assumption.

It is interesting to note that the system without feedback is cooperative in the sense
of [29] for any fixed values of ψ . Moreover, when ψ is seen as an input to the model,
it follows from results in [6] that it has a well defined input to state static characteristic
[30]—i.e. a single globally asymptotically stable, non-degenerate equilibrium for each
value of ψ . These facts suggest that it should be possible to apply the so-called “small
gain theorems” developed by Sontag, Angeli and others [31,30] in order to make
claims about the behaviour of the system with feedback. The difficulty which arises
is that the system as written is not monotone in its inputs (for any order) because the
quantities Fiψ − Fi+1,ψ can take any real value. On the other hand the quantities Fiψ

are of defined sign, suggesting that a clever recoordinatisation might make the system
monotone in its inputs, allowing application of small gain theorems. We consider this
a very promising avenue for future work.
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The work also raises other interesting open questions, both biological and mathe-
matical. From a biological point of view, it would be interesting to see how additional
processes such as transport processes in the full numerical models ([8,11] for example)
affect the conclusions presented here.

We note that since the Markus-Yamabe conjecture does not hold in dimensions
greater than 2 [24], a Jacobian which is everywhere Hurwitz does not necessarily
imply global stability of an equilibrium. An open mathematical question is whether
there are equivalent conditions to the ordering condition in 3D which ensure that the
Jacobian of the system is Hurwitz in arbitrary dimension, or better still that the second
additive compound has negative logarithmic norm, and hence the unique equilibrium is
globally stable. If such conditions exist can they be given general biological meanings?

It would also be interesting to explore when the results presented here survive
weakening of the assumption that electrons are transferred along a chain. Although
electron transfers taking place in the mitochondrial membrane are often described via
a chain it is likely that this description is to some extent a simplification. General
electron transfer networks in the absence of a potential were analysed in [7] and found
to have simple behaviour. Application of the theory presented in [16] should allow
determination of when these networks give rise to P(−) Jacobians when interacting
with a membrane potential.

Finally, given our comment on the Markus-Yamabe conjecture above, although
conditions ensuring sign-symmetry of the system imply that the Jacobian is every-
where Hurwitz, it is an open question as to whether a sign-symmetric P(−) Jacobian
implies global stability of the unique equilibrium. We conjecture that this is the case,
but this remains to be proved.

Appendix

A Definitions

Hurwitz stability of matrices A square matrix is defined to be Hurwitz stable if all
its eigenvalues lie in the open left half of the complex plane—i.e. the real parts of all
its eigenvalues are negative.

P matrices and related classes For some n ×m matrix A, A(α|γ )will refer to the
submatrix of A with rows indexed by the set α ⊂ {1, . . . , n} and columns indexed by
the set γ ⊂ {1, . . . ,m}. A principal submatrix of A is a submatrix containing columns
and rows from the same index set, i.e. of the form A(α|α). A minor is the determi-
nant of any square submatrix of A. If A(α|γ ) is a square submatrix of A (i.e. |α| =
|γ |), then A[α|γ ] will refer to the corresponding minor, i.e. A[α|γ ] = det(A(α|γ )).
A principal minor of A is the determinant of a principal submatrix of A.

P matrices are square matrices all of whose principal minors are positive. They
are by definition nonsingular. If −A is a P matrix, then we will say that A is a P(−)
matrix. If A is a P(−) matrix, this means that each k × k principal minor of A has sign
(−1)k .

Sign symmetry An n ×n matrix is sign-symmetric if symmetrically placed minors
have the same sign, i.e. A[α|γ ]A[γ |α] ≥ 0 for everyα, γ ⊂ {1, . . . , n} with |α| = |γ |.
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Second additive compound matrices A brief definition of the second additive com-
pound of any square matrix can be found in [32]. For a more detailed discussion see
[33]. For a 3D matrix

A =
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ (17)

the second additive compound takes the form2

A[2] =
⎛

⎝
a11 + a22 a23 −a13

a32 a11 + a33 a12
−a31 a21 a22 + a33

⎞

⎠

This second additive compound was constructed using the standard lexicographic
ordering of basis vectors. Choices of ordering make no difference to the logarithmic
norms of the matrix.

Logarithmic norms If ‖ · ‖ denotes a vector norm on R
n , and also the induced

matrix norm on n × n matrices, then the logarithmic norm [34], also known as a
Lozinskiı̆ measure, of an n × n matrix A is defined by

µ(A) = lim
h→0+

‖I + h A‖ − 1

h
(18)

B Local stability in 3D

In this appendix we prove local stability of the equilibrium in three dimensions, subject
to the assumption in (12), using the Routh-Hurwitz theorem. Consider the character-
istic polynomial of a matrix A:

|λI − A| = λn + b1λ
n−1 + . . .+ bn−1λ+ bn (19)

In this equation, I is the n × n identity matrix, and the coefficients bi are the sums
of all principal minors of −A of dimension i . For a P(−) matrix, bi > 0 for all i . Now
define bk ≡ 0 for all k > n, and construct a set of numbers 	i as follows:

2 In general, the second additive compound of a matrix A has dimension d C2 where d = dim(A). When
dim(A) = 3, we get dim(A[2]) = 3 also, but this is not generally the case.
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	i =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

b1 1 0 0 0 0 · · · 0
b3 b2 b1 1 0 0 · · · 0
b5 b4 b3 b2 b1 1 · · · 0
...

...
...

...
...

. . .
... 0

b2i−1 b2i−2 b2i−3 b2i−4 b2i−5 b2i−6 · · · bi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(20)

The Routh-Hurwitz theorem states that A is Hurwitz if and only if 	i > 0 for all
i ≤ n. In three dimensions, we need to check that the three quantities

	1 = b1 (21)

	2 = b1b2 − b3 (22)

	3 = b3(b1b2 − b3) = b3	2 (23)

are all positive. Since all the bi are positive, all three quantities are positive if and only
if 	2 > 0. This in turn follows (condition 12 in [28]) if

0 < a12a23a31 + a21a32a13 − 2a11a22a33

where ai j are elements of A. Substituting ai j for the elements of the Jacobian and
expanding using the open source symbolic algebra program Maxima [35] gives:

a12a23a31 + a21a32a13 − 2a11a22a33 = F21 F32
(
2p3 F3ψ + 2p1 F1ψ − p3 F1ψ

)

+ f11 f22
(
2p3 F3ψ + 2p1 F1ψ − p1 F3ψ

)

+ positive terms

With the ordering assumption (12), we get:

2p3 F3ψ + 2p1 F1ψ − p3 F1ψ ≥ 0 (24)

2p3 F3ψ + 2p1 F1ψ − p1 F3ψ ≥ 0 (25)

Thus the Jacobian is everywhere Hurwitz and hence the unique equilibrium of the
system must be locally asymptotically stable. Note that the restriction (12) is stronger
than necessary to ensure that J is Hurwitz, but no other set of conditions with a clear
physical meaning that make the Jacobian Hurwitz have been discovered. Finding a set
of necessary and sufficient conditions for J to be Hurwitz is a difficult problem.
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